My Galery

WELCOME MY BLOGER . vickybabel10.blogspot.com. DRILLING. RECORDING. HSE. TOPOGRAFI. FREELOADING. CLEARING / BRIDGING. SEISMIC SURVEY ACQUISITION

Saturday, April 16, 2011

STRETCH OF SYMMETRY

A. STRETCH OF SYMMETRY

If the geophones can not be normal then the first alternative is created by the geophones extending symmetrically. In principle, the stretches geophones extending symmetrically with geophones normally, except that the distance between geophones is reduced, but the distance between geophones of one another should be the same.
Geophones extending the symmetry can be caused by trace near roads, rivers, canals or other causes that can cause geophones can not created normally. Lack of symmetry is caused geophones stretch more sensitive to noise and easier to detect than if the ground roll is created geophones normally.

C. STRETCH GROUP
Stretched geophones in the group is the last alternative if it is created can not be normal as well as symmetry. The cause of geophones in a group is created equal why geophones stretched symmetrically. Some of them because of the geophones located near roads, rivers or canals and the path also intersects the road, river or canal.
The stretch group is the most sensitive to noise from outside and the ground roll because the range between geophones is near. But the expanse was also more sensitive in the group receiving seismic vibrations.
The monitor records can be seen that the stretch of that in the group will produce a larger vibration amplitude and relatively longer in detecting vibration. Stretch parameter group is geophones planted in a circle with a diameter of a circle of 1 meter. Should be arranged in such a way that the distance between geophones at large.


RIVER CROSSING

River crossing, when the crossing is intersected by a river wide enough so that we can not connect to the cable link. Usually on the river there were traces of the dead because the trace is located in the middle of the river and not allowed to be compensated or offset. At the river crossing we use the transverse cable whose length can reach 200-300 meters. Cables transverse the link between the two LAUX each located on either side of the river opposite each other. Transverse cable is connected to the port transverse LAUX, if the transverse cables are connected with transverse left port on one LAUX, then on the other LAUX must be connected to be port right transverse.
Something very important and dangerous river crossings are in progress stretching transverse wires in the river, stretching transverse cable is to use a small boat. At the time of the appointment of cable wires often get caught in the riverbed. If this happens then the things that had to be done is to cut the transverse cable.

Wednesday, April 13, 2011

CREW CHECK LEAKAGE

 CREW CHECK LEAKAGE

Crew rojok on duty to check leakage string geophones and check the cable link with LT after raised before it is created again on the track. Check leakage is very important to ensure the inclusion geophone crossing in good condition and to reduce the commutation of geophones and cables in the path,making it easier for trouble shooting. Check for leakage geophones using scan strings. Equipment is taken is :Lt set(cable connector),batteries,jumper power,Laul,tool set(nail,tape,glue,clamp pliers,rope),string scan,contack cleaner,multimeter,buckets,drums,tarps,umbrellas,fuel,compressor,radio Ht,work programs,blank toolbox meeting,helmet,shoes,gloves,glasses,nose masks.

SHOOTER RE-DRILL
Shooter re-drill crew tasked with re-recording due to the occurrence of misfire. In a shooter crew crew there,there was a shooter shooter,shooter must have licenci shooter from migas(oil and gas) crew shooter/re-drill to bring the same equipment with the drilling of production. Equipment brought a set of drilling tools and equipment to other types of flushing like polymergel,explosive,detonator completed,if there are holes for equipment trouble shooting,such as: lost hole,line cut,lost wire,dead after shoot,short wire,dead cap,weak shoot,cap only,no ctb and vht,lost record,wrong spread. Equipment carried: mud pump,king swivel,neple, king hose swivel,drill pipe,suction hose,dragbit,suction hose strainer,lock pipes,hoes, derigen 20 liters, firing line,planting hole,dummy,blaster slave,toolset,lastok,fishing hole,handak box lock padlock,key lock box detonator,dry batteries,cap tester,suction pump gasoline,machetes,pliers jows,polymergel,capsim (uphole test),antenna ringo,radio ht,depth charge,work programs,p3k,blank toolbox meeting,safety equipment (helmet,shoes,groves,glasses,nose masks).

PRODUCTION SHOOTER
Production crew assigned to blow up shooter shot point. Equipment that is brought is the master blaster slave to provide current to blow up the detonator. In one crew,there is one person shooter that already have licences from the oil and gas. Slave blaster is equipped with a radio frequency signal receiver as a communication tool of labo to blow deto,and send data such as holu-up time and confirm to the labo-time break. Crew shooter brings firing line consisting of two lines,that is to be connected to a cable deto and another to be associated with an up hole geophones,crews should bring fishing rod to make it easier to O ring that is planted in the hole Sp. Equipment carried : dry batteries,blaster slave,firing line,antenna ringo,geophone uphole,capsim,toolset,planting hole,fishing hole,radio ht,work programs,P3k, blank toolbox meeting,helmet,glasses,groves, shoes,nose masks.

CREW REPEATER
Repeater crew assigned to install repeater antennas,also set up towers to install antenas. In the area wich is not possible to establish a tower,the antenna can also be mounted in trees. Repeater placement should be considered for facebook to connect the twn sides are communicating. Altitude repeater should also be higher than the surrounding location. Equipment carried are repeater antenna,radio repeater,tali labrang,connector,spare jumper connector,antenna cables,ground nails,ground cable,batteries,jumper power,harnes,toolset(contact cleaner keys),radio ht,work programs,P3k, blank toolbox meeting,helmet,groves,shoes,glasses,nose masks.

CREW BATTERIES
Batteries crew assigned to install thet batteries on Laul or Laux on the track one crew assigned to install one battery and is led by a foreman phone. One crew brought two strings of space rolls of geophones and one link cable. In addition to installing cable,telephone foreman crew is also tasked to perform trouble shooting and keep the noise on the track.

STRETCHER CABLE AND PLANTING GEOPHONES
Stretcher cable is the first phase of work on recording. streched cables carried by the landscape crew. A landscape crew bring 8 rolls link cable and 32 geophones. Duty crew spans connecting cables and geophones are well in accordance. A landscape crew usually carry a roll cable link or two string geophones. After extending the cable further work is done by planting geophones rojok crew. Equipment needed include super planter to make a hole where the geophones are planted,planting hole to plant geophones,and ropes chaining to measure the distance between geophones to comply with predetermined parameters. It should be noted on the planting of geophones are :
- Depth of geophones to be precise.not too far ,ie geophones embedded in clutch so geophones can receive signal properly seismic vibrations.
- Geophones must erect position for geophones to receive sismic with maximal.
- Planting geophones had to be careful so as not cause damage.
- Not good if the geophones planted on the roots,because it can cause noise when the tree roots are swaying in the wing.

TYPE EXPANSE
Type expanse consists of :
A. Normal expanse
B. Stretch of symmetry
C. Stretch Group

A. NORMAL EXPANSE
In a sring of geophones or a trace there are 18 geophones. In the normal stretch of the distance between geophones first with geophones to-18 is
- the distance between the trace
- the distance between the trace *the number of geophones per trace.
Because the distance between the trace is 30 meters then the distance between geophones is 28,33 meter/(18-1) or equal to 1.667 meters. Position stretch of geophones aligned with the track so that all the geophones that lie right at the track.

Continued to........... STRETCH OF SYMMETRY

Saturday, April 9, 2011

PHYSICAL LAWS OF SEISMIC WAVES

 PHYSICAL LAWS OF SEISMIC WAVES

Seismic waves have the same behavior with the behavior of light wave. So the laws that apply to light waves also apply to the seismic waves.
The laws include:
1. Huygens says that the wave spreads from a point source of waves in all directions with a ball.

2. Snellius laws states that when a wave falls in the upper field boundary of two mediums which have different densities, then the wave will be refracted wave if the angle is less than or equal to the critical angle. The wave will be reflected if the arrival angle is greater than the critical angle. Wave come, wave refraction, wave reflection lies in a flat field.


THE TYPES OF SEISMIC WAVES

The types of seismic waves,broadly divided into three types,namely :


A.Seismic wave by wave front shape

B. Seismic wave by place of spreading.


C. Seismic waves according to the way pulsate.


SEISMIC WAVE BY WAVE FRONT SHAPE

Wave front is a plane surface at a certain moment to distinguish the medium that has been disturbed by the medium that has not been disturbed. Wave front is a portrait of the propagation of fault-finding. Based on the wavefront shape, seismic waves can be divided into four types, namely:


1. WAVE FIELD

Plane wave/flat generated by the source comilation. Plane wave propagates along a specific direction with a wavefront of the plane perpendicular to the direction of propagation.


2. CYLINDRICAL WAVE

Cylindrical wave generated by a uniform source of harassment and lies along a straight line. Cylindrical wave radiating to all directions perpendicular to the axis line with the same speed.


3. BAll WAVE

Ball wave/sferis generated by sources such as point (point source) spread in all directions towards the center of the ball or away from the center of the ball at the same speed.


4. CONICAL WAVE

Conical wave generated by the moving source. In this case, the source moves faster than the rapid propagation of the wave itself and face the wave in the form of whel/base cones.


SEISMIC WAVE BY PLACE OF SPREADING

Based on the spreading, seismic waves can be divided into two parts, namely body wave that propagates into the body through the medium and surface waves where the amplitude is weakened when getting into the medium.
Several types of surface waves:


A. RAYLEIGH WAVE

Rayleigh waves are waves that propagate on the boundary surface only and can only travel on solid media and vibration direction opposite to the direction of propagation.


B. LOVE WAVE

Love waves are waves that propagate only in the boundary layer alone and move on a horizontal field.


C. WAVE TUBE

Wave tube is movement/flow of fluids along the well drilling. Fluid motion is caused by vibrations that propagate well wall in axial direction. Wave tube has three processes namely well wall contraction, to part well wall and the flow of fluid within the wellbore.


SEISMIC WAVES ACCORDING TO THE WAY PULSATE

Seismic waves according to the way pulsate,divided into two kinds :
1. Primary wave (longitudinal/compussional wave) primary wave is a wave that direction vibrotion pulsate in the direction of the wave. This wave has the greatest velocity of seismic waves to another.
2. Secondary wave (transversal/shear wave) secondary wave is the wave vibration direction perpendicular to the direction of wave propagation. This wave can only propagade in solid material only and has a wave speed is much smaller than the primary wave.


SEISMIC METHODS

Seismic methods ;one method of exploration is based on meansuring the responce of seismic waves (sound)
that is inserted into the ground and then in reflection or reflaction along different layers of soil or rock beun
daties. seismic source is generally a sledgehammer which in hit on the metal plate above the ground ,the great
mass of in drop or explosion of dynamite. Responses captured from soil measuerd whit a sensor called geophone, which measures the movement of the earth.


KINDS OF SEISMIC METHODS

There are two basic kinds of seismic methods are used, the seismic refraction and seismic reflection.


REFRACTION SEISMIC

Methods of measuring the refraction seismic waves the are reflection throunghout the geological formations
beneath the soil surface. Refraction events generally occur in ground water and the top of the rock bearing
rock formations. Graph of time came the first seismic waves at each geophone provides information on depth and location of these geological horizons. This information in then illustrated in a cross to indicate  the depth  of the water table and first layer of rock bearing rock.


REFLECTION SEISMIC

Seismic reflection method to measure the time if takes a sound impulse to go from the sound source,reflected
by the boundaries of geological formations , and retruned to the soil surface at a geophone .reflections of a geological horizon is similiar to an echo on a cliff or cliff face . Seismic reflection method widely used for petroleum exploration purposes. The datemination of earthquake source or the detection of soil structure.

Seismic reflection only observe reflected waves coming from the boundaries geologi formation .
This reflected wave can be diveded into several types of waves, namely, wave-p, wave-s ,wave stonely, and the waves love.









Thursday, April 7, 2011

SEISMIC THEORYTICAL

vickybabel10.blogspot.com

FILTERING

Filtering is an attempt to 'save' the desired frequency of seismif waves and the 'throw' is not required. There are several kind of band pass filtering,low pass (high cut) and high pass (low cut). In seismik data processing,band pass filte is more commonly used because it is usually contaminated with seismic waves of low frequency noise (such as ground roll) and high frequency nois (ambient nois).

WAVE COMPONENT

Wave component at a seismic trace is the amplitude,peak,trough,zero crossing,height and wavelength.

FREQUENCY SEISMIC WAVE

Frequency seismic waves are 'useful' usually located in a joint 10 to 76 HZ with about 30 HZ (Ozdogan Hilmaz). Dominant frequency,ampliude spectrum of characters also used.

FOLD COVERAGE

Ford coverage is the number of reflections on a field of reflection on the rocks. The greater number of signal reflection on field, it is expected that the better the quality of data generated. Ford coverage is important when the stacking of data processing. At the the time of stacking the data is expected to be carried by the signal can be removed. Time to simulate fold coverage based on the position of shot point and trace the theorytical,simulation and actual. There are mang ways to calculate the fold. But there is the formula that can be used as the basic for calculating fold equation,namely:

Ford =NS*NC*b^2

Where :
NS= the number of shot point per unit area
NC= number of active channel
b = dimensional
For example,say you have 80 shot point per square kilometer with 600 actice channel,and the dimensions of the bin of 25meter. Then fold that we get is :
Fold = 80/km^2*600* (25m)^2=30.
This is a quick way to find out if we want to fold coverage are in accordance with the parameter that we use.

FIRST BREAK

First break is the seismic wave was first recorded. This wave is the wave of the fastest to reach the recipient. In the study of seismic reflection,the first break is used for static correction. In the study of seismic tomography, first break is used as infut to image the wave travel time of seismic wave velocity anomalies below the surface.

GEOPHYSICAL METHODS

In general,geophysical method are divided into two categories: active and passive methods.passive method is done by measuring the field emitted by the earth's natural. Actice method is done by making field disturbance and then measuring the response of the earth. Natural terrain in referrea to here as the earthquake wave radition,earth's gravitation field,earth's magnetic field,electric field and electromagnetic earth, and radioactivity of the earth. Artificial fied can be a dynamite explosion,providing and electrical current into the ground, sending radar signals and so forth. Seismic survey is a type of active geophysical metods, because we use the seismic terrain/ man-made sources of vibrotion. Made is seismic vibrotion source can generated by the detonation of dynamite, air gun or vibrotor.

PROCESS SEISMIC DATA

The data has been obtained from the acquisition will be processed,thus in creasing the power vertical and horizontal resolution that can generate the actual subsurface conditions,namely in from of migrated time section which is easy to be interpreted by the interpreter to achieve maximum results at the time of exploitation.

SEISMIC DATA ACQUISITION

In general,seismic data acquisition activity is starting to make the artificial vibration source,such as vibroseis or dynamite,and then detect and record it to a receiver device,such as geophones or hidrophone. Blast vibrotion results will penetrate into the earth's surface where most of the signals will be transmitted and partly reflected back by the reflector. Signal reflected back is being recorded by a recorder on surface. While signals that penetrate the earth's surface will be reflected back by the second reflection of the signal will be received back by the tape recorder and so on until the last tape recorder. The recorder will generate a trace of seismic data.

SPEED AND RESOLUTION

1. VELOCITY AS A DIAGNOSTIC TOOL,

The nature of the sediment like porosily,density,temperature,grain size,gas saturation,frequency and pressure affect the speed. Increased speed is influenced by external pressure,grain size and dencity. The speed will be reduced at the shaft and/or sediment have a large pore pressure.

2. VOLECITY MEASURMENTS

Velocity measurment is based on arrival time changes reflected in change in the distance from vibration source to geophones. The distance is krown as offset,while difference in the time of the offset is colled normal moveout. Velocity as the implication is called stacking velocity.

3. RESOLUTION
Resolution is defined as the smallest distance between the two appears to them. The pattern of reflection with two interfaces will appear in a division with a thickness of 1/4 wavelenght, whereas if the thickness is less than it would seem only one interface. Boundary layer thickness that can provide reflectance is about 1/3 of the wavelenght. Frequency seismic waves is smaller than the frequencies used in the well logs, so the ability of seismic change is much greater, about 100 fold. The smaller the frequency and speed, then the wave will be even greater.

SEISMOLOGY AND SEISMIC DRILLING

 SEISMOLOGY AND SEISMIC DRILLING


Seismologist departement is responsible for drilling a hole shot point and planting explosives properly. Drilling carried out before recoording implemented. During drilling operations,drilling on bullet point with the depth of tolerance that has been determined by the counter party. After the hole is filled with explosive, then tamping. Results of drilling holes in the field is ready to fire. Output from a drilling depth is another form of data charging explosives, and the number of explosives that are used on every hole. In addition,drilling must also provide data on the shot point offset or compensation. The lithology is very influential on the productivity of drilling. In lithologic hard drilling productivity will decline. Another obstacle is often found in sandy areas that can cause the drill pipe stuck. In the area of coral often fell apart when the pipe drill holes unplugged. Drilling will also be hampered in areas that are difficult to find water.


Seismology

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Seismology (/szˈmɒləi/) is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist is a scientist who does research in seismology.

Contents

Highlights of the history of seismology

Some milestones in the development of seismology are:[1]
Early speculations on the natural causes of earthquakes in the writings of Thales of Miletos (ca. 585 B.C.E.), Anaximenes of Miletos (ca. 550 B.C.E.), Aristotle (ca. 340 B.C.E.) and Zhang Heng (132 C.E.).
In 132 C.E., Zhang Heng of China's Han dynasty designed the first known seismoscope.
In 1664 Athanasius Kircher argued that eathquakes were caused by the movement of fire within a system of channels inside the Earth.
In 1703 Martin Lister (1638 to 1712) and Nicolas Lemery (1645 to 1715) proposed that earthquakes were caused by chemical explosions within the earth.
The Lisbon earthquake of 1755, coinciding with the general flowering of science in Europe, set in motion intensified scientific attempts to understand the behaviour and causation of earthquakes. The earliest responses include work by John Bevis (1757) and John Michell (1761). Michell determined that earthquakes originate within the Earth and were waves of movement caused by "shifting masses of rock miles below the surface".
From 1857 Robert Mallet laid the foundation of instrumental seismology and he carried out seismological experiments using explosives.
In 1897, Emil Wiechert's theoretical calculations led him to conclude that the Earth's interior consists of a mantle of silicates, surrounding a core of iron.
In 1906 Richard Dixon Oldham identified the separate arrival of P-waves, S-waves and surface waves on seismograms and found the first clear evidence that the Earth has a central core.[2]
In 1910, after studying the 1906 San Francisco earthquake, Harry Fielding Reid put forward the "elastic rebound theory" which remains the foundation for modern tectonic studies. The development of this theory depended on the considerable progress of earlier independent streams of work on the behaviour of elastic materials and in mathematics.
In 1926 Harold Jeffreys was the first to claim, based on his study of earthquake waves, that below the crust, the core of the Earth is liquid.
In 1937 Inge Lehmann determined that within the earth's liquid outer core there is a solid inner core.
By the 1960s earth science had developed to the point where a comprehensive theory of the causation of seismic events had come together in the now well-established theory of plate tectonics.

Types of seismic wave

Three lines with frequent vertical excursions.
Seismogram records showing the three components of ground motion. The red line marks the first arrival of P-waves; the green line, the later arrival of S-waves.
Seismic waves are elastic waves that propagate in solid or fluid materials. They can be divided into body waves that travel through the interior of the materials; surface waves that travel along surfaces or interfaces between materials; and normal modes, a form of standing wave.

Body waves

There are two types of body wave, P-waves and S-waves (both body waves). Pressure waves or Primary waves (P-waves), are longitudinal waves that involve compression and rarefaction (expansion) in the direction that the wave is traveling. P-waves are the fastest waves in solids and are therefore the first waves to appear on a seismogram. S-waves, also called shear or secondary waves, are transverse waves that involve motion perpendicular to the direction of propagation. S-waves appear later than P-waves on a seismogram. Fluids cannot support this perpendicular motion, or shear, so S-waves only travel in solids. P-waves travel in both solids and fluids.[3]

Surface waves

The two main kinds of surface wave are the Rayleigh wave,which has some compressional motion, and the Love wave, which does not. Such waves can be theoretically explained in terms of interacting P- and/or S-waves. Surface waves travel more slowly than P-waves and S-waves, but because they are guided by the surface of the Earth (and their energy is thus trapped near the Earth's surface) they can be much larger in amplitude than body waves, and can be the largest signals seen in earthquake seismograms. They are particularly strongly excited when their source is close to the surface of the Earth, as in a shallow earthquake or explosion.[3]

Normal modes

The above waves are traveling waves. Large earthquakes can also make the Earth "ring" like a bell. This ringing is a mixture of normal modes with discrete frequencies and periods of an hour or longer. Motion caused by a large earthquake can be observed for up to a month after the event.[3] The first observations of normal modes were made in the 1960s as the advent of higher fidelity instruments coincided with two of the largest earthquakes of the 20th century - the 1960 Great Chilean Earthquake and the 1964 Great Alaskan Earthquake. Since then, the normal modes of the Earth have given us some of the strongest constraints on the deep structure of the Earth.

Earthquakes

One of the first attempts at the scientific study of earthquakes followed the 1755 Lisbon earthquake. Other especially notable earthquakes that spurred major developments in the science of seismology include the 1857 Basilicata earthquake, 1906 San Francisco earthquake, the 1964 Alaska earthquake, the 2004 Sumatra-Andaman earthquake, and the 2011 Great East Japan earthquake. An extensive list of famous earthquakes can be found on the List of earthquakes page.

Controlled seismic sources

Seismic waves produced by explosions or vibrating controlled sources are one of the primary methods of underground exploration in geophysics (in addition to many different electromagnetic methods such as induced polarization and magnetotellurics). Controlled-source seismology has been used to map salt domes, faults, anticlines and other geologic traps in petroleum-bearing rocks, geological faults, rock types, and long-buried giant meteor craters. For example, the Chicxulub Crater, which was caused by an impact that has been implicated in the extinction of the dinosaurs, was localized to Central America by analyzing ejecta in the Cretaceous–Paleogene boundary, and then physically proven to exist using seismic maps from oil exploration.[4]

Detection of seismic waves

Seismometers are sensors that sense and record the motion of the Earth arising from elastic waves. Seismometers may be deployed at Earth's surface, in shallow vaults, in boreholes, or underwater. A complete instrument package that records seismic signals is called a seismograph. Networks of seismographs continuously record ground motions around the world to facilitate the monitoring and analysis of global earthquakes and other seismic sources. Rapid location of earthquakes makes tsunami warnings possible because seismic waves travel considerably faster than tsunami waves. Seismometers also record signals from non-earthquake sources ranging from explosions (nuclear and chemical), to local noise from wind or anthropogenic activities, to incessant signals generated at the ocean floor and coasts induced by ocean waves (the global microseism), to cryospheric events associated with large icebergs and glaciers. Above-ocean meteor strikes with energies as high as 4.2 × 1013 J (equivalent to that released by an explosion of ten kilotons of TNT) have been recorded by seismographs, as have a number of industrial accidents and terrorist bombs and events (a field of study referred to as forensic seismology). A major long-term motivation for the global seismographic monitoring has been for the detection and study of nuclear testing.

Mapping the earth's interior

Diagram with concentric shells and curved paths
Seismic velocities and boundaries in the interior of the Earth sampled by seismic waves
Because seismic waves commonly propagate efficiently and interact with internal structure, they provide high-resolution noninvasive methods for studying Earth's interior. One of the earliest important discoveries (suggested by Richard Dixon Oldham in 1906 and definitively shown by Harold Jeffreys in 1926) was that the outer core of the earth is liquid. Since S-waves do not pass through liquids, the liquid core causes a "shadow" on the side of the planet opposite of the earthquake where no direct S-waves are observed. In addition, P-waves travel much slower through the outer core than the mantle.
Processing readings from many seismometers using seismic tomography, seismologists have mapped the mantle of the earth to a resolution of several hundred kilometers. This has enabled scientists to identify convection cells and other large-scale features such as Ultra Low Velocity Zones near the core–mantle boundary.[5]

Seismology and society

Earthquake prediction

Forecasting a probable timing, location, magnitude and other important features of a forthcoming seismic event is called earthquake prediction. Various attempts have been made by seismologists and others to create effective systems for precise earthquake predictions, including the VAN method. Most seismologists do not believe that a system to provide timely warnings for individual earthquakes has yet been developed, and many believe that such a system would be unlikely to give significant warning of impending seismic events. However, more general forecasts routinely predict seismic hazard. Such forecasts estimate the probability of an earthquake of a particular size affecting a particular location within a particular time-span, and they are routinely used in earthquake engineering.
Public controversy over earthquake prediction erupted after Italian authorities indicted six seismologists and one government official for manslaughter in connection with a magnitude 6.3 earthquake in L'Aquila, Italy on April 5, 2009. The indictment has been widely perceived[by whom?] as an indictment for failing to predict the earthquake and has drawn condemnation from the American Association for the Advancement of Science and the American Geophysical Union. The indictment claims that, at a special meeting in L'Aquila the week before the earthquake occurred, scientists and officials were more interested in pacifying the population than providing adequate information about earthquake risk and preparedness.[6]

Tools

Seismological instruments can generate large amounts of data. Systems for processing such data include:

Notable seismologists

See also

Wednesday, April 6, 2011

TOPOGRAPHIC DATA PROCESSING

Gps,Rtk,

Total Station
Field measurement data is then processed further, using computer assistance.Data from ETS processed by software for mapping switf. The calculation result of the data coordinates X,Y,Z,then we can obtain the difference between the theoretical data with measurments, the process data is done daily, then pooled into a single perfect-bound polygons (loop) daily processing to check whether the size ha distori or not. In this case the daily process of applying polygon off,it they get distori distori extent to which that has accurred,wheter signed or not tolerance. The most fundamental is the 3D seismic which is the position maintained shootpoint and trace,where the tolerance of each point -+ 5 meters. While in the 2D seismic which is maintained is the interval of each sp. The main source of the topographic data is the result of measurement stake out in the field (x,y) and the measurement result elevasi (2), the data that support the primary measure of data is data sun shot (at the beginning and end of measurement) and at the start line then there are the coordinates of the the start line. Coordinates of the seismic work consists of the calculation systems,namely :
- Polygon ferfect bound.
- A closed polygon.
No differences were fairly basic of the two polygons,the difference is in terms of the lid. The technical line which is measured must be bound. If there is no tip line control points,then made the shortest access to the line next to it to make a looping polygon. This is done to make mikanisme quality control of data measurment with a predetermined tolerance. While on the measurement line intersecting (crossing) points from the lines fix that intersect one another strapped, this is done to obtain the coordinates of crossing points through mikanisme adjustment. After all the size of each section are chaked with a tolerance, either through checks or perfect bound polygons with polygon loop.

Geodesi Pada Dunia Seismik

Aplikasi Ilmu Geodesi Geomatika pada dunia kerja salah satunya adalah pada dunia seismik. Eksplorasi seismik sendiri adalah istilah yang dipakai di dalam bidang geofisika untuk menerangkan aktivitas pencarian sumber daya alam dan mineral yang ada di bawah permukaan bumi dengan bantuan gelombang seismik. Hasil rekaman yang diperoleh dari survei ini disebut dengan penampang seismik. Eksplorasi seismik atau eksplorasi dengan menggunakan metode seismik banyak dipakai oleh perusahaan-perusahaan minyak untuk melakukan pemetaan struktur di bawah permukaan bumi untuk bisa melihat kemungkinan adanya jebakan-jebakan minyak berdasarkan interpretasi dari penampang seismiknya.
Contoh bagian dari ilmu Geodesi Geomatika pada pekerjaan seismik yang paling sering digunakan adalah survey GPS, Ilmu Ukur Tanah, Kartografi, dan GIS. Selain ilmu-ilmu Geodesi tersebut, banyak juga bagian dari ilmu Geodesi lain yang teraplikasi pada dunia kerja seismik, seperti survey hidrografi yang teraplikasi pada dunia kerja seismik air (marine seismic survey).
Pada awal pekerjaan, orientasi wilayah kerja sangat diperlukan untuk perencanaan pekerjaan selanjutnya. Orientasi ini meliputi orientasi langsung ke lapangan dan orientasi menggunakan data pendukung seperti peta, citra, dan data survey sebelumnya jika dimiliki. Dari hasil orientasi ini, pekerjaan selanjutnya adalah perencanaan Jaring GPS sebagai Jaring Kontrol Horizontal dan Vertikal. Pada perencanaan jaring GPS ini harus diperhitungkan aksesibilitas wilayah dan kondisi obstruksi wilayah rencana patok (BM) GPS. 
Setelah jaring GPS selesai dan semua persyaratan survey GPS sudah masuk toleransi yang ditentukan, pekerjaan selanjutnya adalah pengukuran 'lintasan seismik'. Lintasan seismik adalah jalur tempat akan dilaksanakannya survey seismik dimana lintasan seismik ini terdiri dari posisi-posisi sumber getar (Source Point) dan posisi-posisi penerima getaran (Receiver Point/Trace) yang memiliki interval jarak tertentu antar satu SP dengan SP lain atau antar satu Trace dengan Trace lain. Lintasan seismik sendiri biasanya lurus, tidak berbelok-belok, bisa berpotongan atau sejajar antara satu lintasan satu dengan lintasan lainnya. Panjang satu lintasan seismik bervariatif, bisa sampai ratusan km, tergantung wilayah kerja dan biasanya sudah ditentukan oleh perusahaan penyelenggara survey seismik mengenai koordinat ujung-ujung lintasan seismik. Kondisi seperti inilah yang memerlukan ketelitian dalam pekerjaan survey topografi untuk pengukuran lintasan seismik. Awal pengukuran atau yang biasa disebut pembukaan lintasan dilakukan dari titik kontrol terdekat (GPS) atau jika tidak memungkinkan, maka dilakukan pengukuran poligon dari titik GPS menuju lintasan terdekat (pengukuran ini biasa disebut dengan pengukuran akses).
Metode survey yang digunakan dalam survey pengukuran lintasan adalah metode stake out koordinat, dimana koordinat rencana posisi SP dan Trace (TR) sudah diketahui terlebih dahulu dan koordinat tersebut diaplikasikan pada posisi real/kenyataannya di lapangan. Untuk kontrol pengukuran sehari-harinya, maka dilakukan pengamatan azimuth matahari sebagai kontrol azimuth pengukuran, sehingga posisi SP dan TR teoritik tidak melenceng dari posisi seharusnya di lapangan. Mungkin terkesan klasik atau kuno karena pengamatan azimuth matahari masih digunakan sampai saat ini pada pengukuran seismik namun hal ini perlu dilakukan karena kontrol pengukuran harus diperoleh setiap hari sehingga pengukuran hari selanjutnya setidaknya sudah terkoreksi dan kesalahan melencengnya lintasan dari jalur seharusnya bisa dihindarkan. 
pengukuran topografi di area rawa-rawa
Penggambaran hasil pekerjaan diperlukan untuk mengetahui progress atau perkembangan pekerjaan setiap harinya. Estetika ilmu kartografi berperan dalam penggambaran peta progress ini agar setiap orang bisa menikmati dengan nyaman hasil gambar peta kita. Dalam pekerjaan survei seismik, banyak departemen atau bagian lain yang terlibat seperti bagian pengeboran, bagian kehumasan, bagian perekaman, dan bagian lainnya dimana setiap bagian memiliki data masing-masing. Dengan GIS, kita bisa mengintegrasikan data antar satu departemen dengan departemen lainnya sehingga menghasilkan sebuah database yang lengkap dan tampilan peta yang informatif yang bisa digunakan oleh semua departemen yang memerlukan.


Sekilas SVG

Saat ini banyak dikembangkan Sistem Informasi Geografi yang berbasis internet (SIGNET). Dalam SIGNET, Informasi spasial dan atribut dari permukaan bumi disajikan dengan berbasiskan web sehingga setiap informasi kebumian dari suatu wilayah dapat diakses dimanapun secara on line. Salah satu cara untuk menyajikan SIG dalam internet adalah menggunakan SVG.
SVG adalah singkatan dari Scalable Vector Graphics dan merupakan format file baru untuk menampilkan grafik dalam pengembangan web yang berbasis XML (eXtensible Markup Language). Selain SVG, ada juga MathML (Mathematic Markup Language) - berbasis XML- untuk menampilkan rumus-rumus matematika dan juga CML (Chemical Markup Language) untuk kimia (Athar dalam ilmukomputer.com).
SVG berfungsi untuk menampilkan grafik 2 dimensional dalam kode XML.
Pada dasarnya, SVG dapat digunakan untuk membuat tiga jenis objek grafik, yaitu :
1. path (terdiri dari garis lurus dan kurva),
2. gambar,
3. teks.
SVG dapat mengkreasikan sebuah grafik yang terdiri dari banyak vektor yang berbeda-beda. Sebuah vektor pada dasarnya adalah garis yang menghubungkan dua titik.


Hitung Perataan Kuadrat Terkecil


Setiap pengukuran selalu dihinggapi kesalahan yang sifatnya acak. Oleh karena itu dibutuhkan suatu metode yang dapat menentukan nilai parameter tertentu dengan meminimalkan kesalahan acak. Hitung perataan adalah suatu cara untuk menentukan nilai koreksi yang harus diberikan pada hasil pengukuran, sehingga hasil pengukuran memenuhi syarat geometriknya (Wolf, 1980). Syarat geometrik merupakan suatu kondisi yang harus dipenuhi dari hubungan suatu pengukuran dengan pengukuran lainnya.
Hitung perataan kuadrat terkecil dimaksudkan untuk mendapatkan harga estimasi dari suatu parameter yang paling mendekati harga yang sebenarnya dengan cara menentukan besaran yang tidak diketahui (parameter) dari sekumpulan data ukuran yang mempunyai pengamatan lebih. Penyelesaian hitung kuadrat terkecil dilakukan dengan mencari suatu nilai akhir yang unik dengan cara tertentu sehingga jumlah kuadrat residualnya (VTPV) minimum, sehingga tidak mungkin ada nilai hasil hitungan lain yang jumlah kuadrat residualnya (VTPV) lebih kecil (Hadiman, 1991). Nilai parameter yang diperoleh dengan hitung perataan sebenarnya merupakan nilai estimasi terhadap nilai benar atau representasi dari nilai terbaik. Prinsip hitung perataan adalah adanya ukuran lebih atau derajat kebebasan. Persamaan untuk menghitung derajat kebebasan (r) adalah :
r = n – u
Dalam hal ini :
n = jumlah pengukuran
  u = jumlah parameter yang akan dicari


PETA

Peta merupakan gambaran wilayah geografis, biasanya bagian permukaan bumi. Peta bisa disajikan dalam berbagai cara yang berbeda, mulai dari peta konvensional yang tercetak hingga peta digital yang tampil di layar komputer. Peta dapat menunjukkan banyak informasi penting, mulai dari supply listrik di daerah Anda sampai daerah Himalaya yang berbukit-bukit atau sampai kedalaman dasar laut.
Peta bisa menjadi petunjuk bagi pelancong/wisatawan, atau menjelaskan dunia dengan menyertakan jenis informasi geografi khusus. Peta juga dapat mengundang eksplorasi. Sebagai contoh, peta berwarna Pulau Marquases dengan pelabuhan yang eksotik seperti Hakapehi di Nuku Niva mungkin kedengaran menarik bagi seseorang. Dengan kata lain, peta yang berisi banyak detail yang menarik dari suatu daerah/wilayah dapat menggoda/menarik orang lain ke wilayah tersebut.


Sekilas tentang GPS


Beberapa tahun yang lalu Bill Clinton, presiden Amerika saat itu mengumumkan penggunaan sistem navigasi satelit untuk GPS mulai bisa digunakan oleh kalangan sipil, sebelumnya GPS adalah teknologi eksklusif yang hanya digunakan kalangan militer. GPS terdiri dari 3 bagian, bagian space yang mengatur konstelasi satelit, bagian control yang memantau dan mengatur orbit serta mengirimkan data, dan user sebagai pengguna GPS. GPS dirancang dan dikendalikan oleh Dephan Amerika yang kini bisa dinikmati oleh publik.
Perangkat GPS yang kita kenal seperti telepon selular atau PDA adalah sebuah GPS receiver. Pertama kali saya memegang GPS adalah sekitar pertengahan 2001 untuk keperluan pekerjaan, dibeli oleh kantor karena merek semakin banyak dan harga semakin relatif murah. GPS receiver bekerja menerima sinyal dari satelit GPS. Satelit ini cukup banyak yang mengorbit di Medium Earth Orbit (MEO), pada ketinggian 1.400km (Low Earth Orbit - LEO) hingga 36.000km (Geostationer Earth Orbit - GEO). Kumpulan satelit GPS dikenal sebagai konstelasi satelit GPS, saat ini sudah lebih dari 24 satelit mengorbit di atas bumi dalam 6 bidang orbital plane (tidak hanya mengorbit sejajar dengan equator).


Sekilas Tentang Geodesi


Ilmu ukur tanah adalah bagian dari ilmu geodesi yang mempelajari cara-cara pengukuran di permukaan bumi dan di bawah tanah untuk berbagai keperluan seperti pemetaan dan penentuan posisi relatif pada daerah yang relatif sempit sehingga unsur kelengkungan buminya dapat diabaikan.

Sedangkan geodesi mencakup cakupan yang lebih luas,tidak sekedar pemetaan dan penentuan posisi di darat, namun juga di laut,juga penentuan bentuk dan dimensi bumi baik dengan pengukuran permukaan bumi, dengan bantuan pesawat udara, maupun dengan satelit dan sistem informasinya.

Disiplin dari surveying, dapat digolongkan dalam berbagai bidang studi, yaitu:

Survei geodesi : meliputi penentuan bentuk dan ukuran bumi, medan gravitasi dan pembuatan jaring kontrol pemetaan. Aktifitasny dikembangkan tentang penentuan posisi dengan satelit.

Survey permukaan tanah datar (plane survey):pengukuran areal terbatas,efek kelengkungan bumi diabaikan. Survey permukaan tanah terdiri dari survey topografi,kadaster,rekayasa,dan tambang.

Survey fotogrametri:meliputi aspek-aspek pengukuran dan pemetaan dari foto udara dan foto terestris(darat), teknik penginderaan jauh dan interpretasi foto.

Survey radargrametri:subyeknya sama dengan fotogrametri, yang berbeda hanya panjang gelombang yang digunakan dan sensornya. Pada radargrametri menggunakan gelombang mikro dengan sensor aktif.

Survei topografi:pemetaan permukaan bumi fisik dan kenampekan hasil budaya manusia.unsur relief disajikan dalam bentuk garis kontur. Skala peta berkisar antara 1:500 sampai dengan 1:250.000 dengan interval garis kontur antara 0,25-100 mtr. Peta jenis ini yang berskala lebih besar dari 1:2500 disebut peta teknik dan yang tanpa garis kontur disebut peta plan.

Survey kadaster:untuk menentukan posisi batas kepemilikan tanah (persil), pemetaan bidang tanah untuk pendaftaran hak atas tanah dan untuk kepastian hukum atas kepemilikan tanah (sertifikat), serta pemetaan untuk pajak bumi dan bangunan (PBB) atau kadastral fiskal.

Survey rekayasa:mencakup pemetaan topografi skala besar sebagai dasar dari perencanaan dan desain rekayasa seperti jalan, jembatan, bangunan gedung, jalan layang dan bendungan.

Suvey tambang(mine survey):mencakup teknik-teknik khusus yang diperlukan untuk menentukan posisi-posisi dan gambar proyeksi obyek,baik di bawah tanah maupun dipermukaan bumi.

Survey hidrografi:berkaitan dengan areal permukaan dan bawah air,terdiri dari 2 cabang, yaitu survei lepas pantai dan dekat pantai.

Selain disiplin survey diatas, untuk keperluan penggambaran peta masih diperlukan disiplin lain yaitu kartografi. Kartografi adalah ilmu dan seni pembuatan peta agarpenyajian peta menjadi informatif dan menarik. Subyeknya meliputi proyeksi peta,kartometri,desain,kompilasi,reproduksi,prosedur otomisasi dan lain-lain.

Proyeksi peta adalah suatu sistem yang memberikan hubungan antara posisi titik-titik di permukaan bumi dan diatas peta. Permukaan bumi fisis yang tidak teratur mengakibatkan hubungan matematis antara posisi di atas peta sulit ditentukan. Oleh karena itu diambil pendekatanpermukaan bumi fisis yang mudah diurai secara matematis dan mendekati bentuk bumi yang sebenarnya, yaitu elipsoid dengan ukuran tertentu.

Posisi titik pada permukaan bumi biasanya dinyakatan dalam lintang dan bujur. Sedangkan posisi titik pada peta yang berupa bidang datar dinyatakan dalam koordinat kartesian (x,y) karena sulit untuk mendatarkan bidang lengkung tanpa adanya perubahan-perubahan atau distorsi, baik distorsi jarak,luas,bentuk,maupun arahnya. Bidang proyeksi yang bisa didatarkan antara lain bidang datar itu sendiri, kerucut dan bidang silinder. Sistem proyeksi yang menggunakan bidang datar sebagai bidang proyeksi disebut proyeksi azimutal, yang menggunakan bidang kerucut disebut proyeksi konik, dan yang menggunakan bidang silinder dinamakan proyeksi mercator.